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The mechanism of free turbulence is utilized for the solution of the 
problem of flows in the region of separating turbulent boundary layer. 

The presence of reversed flows in the retarded zones is found. Cases 
of supersonic flow over a step (two-dimensional) and around a blunt body 
with a sting attached to the nose (axisymaetri~al case) are examined. 

The interaction of strong pressure gradients with turbulent boundary 
layer may cause separation, which is observed, for instance, on stings 
attached to the nose of blunt bodies [l ] or in a flow over a step f2 I. 
From experiments conducted in [2 ] it follows that the ratio of peak 
pressure rise in the stagnation zone ahead of the step to the free stream 
pressure does not change with increase in height of the step if it is 
more than twice the thickness of the boundary layer. Simultaneously with 
increase in height of the step, the point of separation moves upstream 
so that the ratio of step height to the distance from the step to the 
point of separation remains approximately constant for a given free 

stream M. The total pressure distribution in various cross-sections of 
the separated zone indicates presence of reversed flows in the retarded 
zone near the wall [Z I, while pressure gradients are found to be negli- 
gibly weak. These facts, and the fact of intensive turbulent mixing. ob- 
served in the retarded zone, suggests its investigation within the frame- 
work of free turbulence theory. In the light of this a retarded zone can 
be examined as a turbulent mixing zone adjacent to a Semi-infinite free 
stream region. 

Let h be the height of a step in a supersonic flow and 6 the thick- 

ness of the boundary layer. Assume that h/6 >> 1. In t5.s case, separa- 
tion begins near the point of intersection of the attached shock wave 

with the boundary layer. A rectilinear system of coordinates x, y is 
selected so that the origin is at the point of separation and the x-axis 
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is parallel to the velocity vector U, behind the attached shock wave. On 
Fig. 1, a is the attached shock wave, ~3 the zone of reversed flows, 2 
the boundary of the retarded flow. Let us limit ourselves to the examin- 
ation of incompressible flow; compressible flow will be examined later. 
The equations of motion, continuity and energy in the case of two- 

dimensional free flow are 

Here p is the density, T*the temperature in the zone of retardation, 
r the turbulent friction, q* the function which characterizes turbulent 
heat flow, cp the specific heat, u, v the components of velocity along 
the axes. 

The relationship between I and q* and the mean flow is selected 
according to Taylor's vorticity transfer hypothesis 

Here, I is the mixing path in Prandtl's theory. The constant c char- 
acterizes the structure of the turbulent flow and is determined experi- 

mentally. As in Tollmien's problem, 
the velocity fields and temperature 
fields are assumed to be similar and 
dependent only upon the coordinate 

~=~/az (a= ;s, 

The zone of turbulent mixing will 
be limited by the straight rays, 

PIG. 1. 
#= gSr the interior boundary and (;5= 
rb, the exterior boundary of the jet, 
the direction of which is determined 

by solution of the boundary-condition problem. Conditions on the exterior 
boundary must account for the presence of the reverse flows, and the 
inner boundary itself must be at a certain distance from the wall. Let 
us assume that conditions upon the ray t$, are the same as on the exterior 
boundary, conditioned in turn by the reversed flow. 

That assumption is equivalent to the statement that the ray += 4 
coincides with the wall and is assumed to be a stream line. 

The boundary condition will be 
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From the limiting conditions of shear stress at the point of separa- 
tion, it follows that the shear stress along the ray q5= & must be equal 
to zero. From the general solution of Tollmien’s equation 

and satisfying the boundary condition, we find 

cp1= 1.003, cp2 = - 3.23, u (cpz) = - 0.207 U,, 27 (cp2) = 0.67 a(i, 

Experimental values of the constant a, according to the various 
sources, are 

a = 0.058 (Pa&l), a = 0.0845 (Tollmien), n -1 0.074 (Heichart) 

Taking a = 0.074, we obtain the angle of the retarded zone equal to 
1?4Q’. ‘Ihe experimental value of the angle, according to [ 1 I , is 
approximately the same. 

Knowing the angle of the retarded zone and the direction of flow on 
the interior ray q5 = c&, the angle of the attached pressure gradient at 
a given free stream M is found. ‘lbe energy equation, as is well known, 
leads to a linear distribution of stagnation temperatures 

Here Z’,* is the free-stream stag- 
nation temperature 

T2* is the stagnation tenpe- 
rature at 4 = &. 

In the case of the sting attached 
to the nose of a blunt-shaped body, 
it is necessary to note that the re- 
tarded zone has the shape of a cone 
and the stream lines are also conical. 

Let us examine the case when the 
retarded zone begins at the tip of 
the sting, which is selected as the origin of coordinate axes, x, Y. 
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The direction of the x-axis with respect to the axis of the sting is 

determined by solving the problem of the free-stream boundary when the 

ray 4 = $1 coincides with the conical boundary of the retarded zone. If 
r(x, y) is the distance between the sting axis and the point which is 

being investigated (Fig. 21, then the equations of motion and continuity 

in the selected system of coordinates are 

We now introduce the stream function 

(i, = ax2UXF (cp) 

where U, is the projection of the stream velocity on the boundary of the 

retarded zone. ‘lhen the equation of motion is 

- 2F (3’ = [($)B q]’ (q tcp) = $) 

Solving this equation for the boundary conditions which account for the 
presence of turbulent boundary layer on the sting, we find that the half- 

angle of the retarded zone is equal to 15.50. ‘lhis is close to the ex- 

perimental value ( - 18J 1 taken from 11 3 . 
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